ANTI-DIABETIC DRUGS

Presented by Ansari Imtiyaz

Content

Diabetes Mellitus

Types of Diabetes Mellitus

Management of Diabetes Mellitus

References

www.shutterstock.com · 165930575

Diabetes Mellitus:

It is metabolic disorder characterized by

✓Hyperglycaemia

✓ Glucosuria

✓ Negative Nitrogen Balance

✓ Sometime Ketonaemia

Types of Diabetes Mellitus

Two major Type

•Type I : Insulin-Dependant Diabetes Mellitus (IDDM)

•Type II : Non Insulin-Dependant Diabetes Mellitus (NIDDM)

Management of DM

 The major components of the treatment of diabetes are:

Diet and Exercise

Insulin

One of a number of hormones that is required for normal growth and development

Insulin was discovered in 1921 by Banting and Best.

It is a Peptide Hormone

produced by beta cells in the pancreas

regulating carbohydrate and fat metabolism in the body.

www.shutterstock.com · 101962141

Types of Insulin

Rapid Acting Insulin Lispro Insulin Aspart Insulin Glulisine

Short Acting Regular (Soluble) insulin

Intermediate Acting Insulin Zinc Suspension or Lente* Neutral Protamine Hagedorn

Long Acting Protamine zinc insulin Insulin glargine

Mechanisms of Insulin Action

Types of insulin					
Insulin type/action (appearance)	Brand names (generic name in brackets)	Basal/bolus	Dosing schedule		
Rapid-acting analogue (clear) Onset: 10–15 minutes Peak: 60–90 minutes Duration: 4–5 hours	Humalog® (insulin lispro) NovoRapid® (insulin aspart)	Bolus	Usually taken right before eating or to lower high blood glucose		
Short-acting (clear) Onset: 0.5–1 hour Peak: 2–4 hours Duration: 5–8 hours	Humulin®-R Novolin®ge Toronto	Bolus	Taken about 30 minutes before eating, or to lower high blood glucose		
Intermediate-acting (cloudy) Onset: I–3 hours Peak: 5–8 hours Duration: up to 18 hours	Humulin®-N Novolin®ge NPH	Basal	Often taken at bedtime, or twice a day (morning and bedtime)		
Extended long-acting analogue (Clear and colourless) Onset: 90 minutes Peak: none Duration: 24 hours	Lantus® (insulin glargine) Levemir® (insulin detemir)	Basal	Usually taken once or twice a day		
Premixed (cloudy) A single vial contains a fixed ratio of insulins (the numbers refer to the ratio of rapid- or fast-acting to intermediate-acting insulin in the vial)	Humalog® Mix 25™ Humulin® (20/80, 30/70) Novolin®ge (10/90, 20/80, 30/70, 40/60, 50/50)	Combination of basal and bolus insulins	Depends on the combination		

Insulin function

Increased glucose uptake

Increased glucose use and storage

Increased protein synthesis

Increased fat storag

Oral hypoglycaemic therapy

Category	Examples	
Sulfonylurea's	1 st generation Tolbutamide Tolazamide Chlorpropamide Acetohexamide 2 nd generation Glipizide Glyburide Glimepride Gliclazide	
Biguanides	Metformin	
Meglitinides	Repaglinde Nataglinide	

Thiazolidiones or Glitazones	Pioglitazones Troglitazone Rosiglitazone
Alpha-glycosidase inhibitor	Acarbose Miglitazone
Incretin mimetic	Glucagon like peptide analogue(GLP) Exenatide Liraglutide Gastric inhibitory peptide analogue(GTP)
Dipeptide peptidase inhibitor(DPP-G)	Vidagliptin Sitagliptin
Amylin analogue	Pramlintide

Oral Hypoglycaemic Medications

AGENTS & ACTIONS

Drug Class	Drug Name	Brand Name	Mechanism of Action
Biguanides	Metformin	Glucophage®	Inhibit glucose production by the liver
Sulfonylureas (second-generation)	Glimepiride Glipizide Glyburide	Amaryl® Glucotrol® Diabeta®, Glynase PresTab®, Micronase®	Increase insulin secretion by pancreatic beta cells
Meglitinides	Repaglinide Nateglinide	Prandin® Starlix®	Increase insulin secretion by pancreatic beta cells
Thiazolidinediones (TZDs)	Pioglitazone Rosiglitazone	Actos® Avandia®	Increase glucose uptake by skeletal muscle
Alpha-glucosidase inhibitors	Acarbose Miglitol	Precose® Glyset®	Inhibit carbohydrate absorption in the small intestine

Sulfonylurea's Jack, 2013

Advantage

✓Inexpensive

✓ Fast onset of action

✓ No effect on <u>blood pressure</u>

✓ No effect on <u>low-density lipoprotein</u>

✓ lower risk of <u>gastrointestinal</u> problems than with metformin

✓ more convenient dosing

Disadvantages:

■causes an average of 5–10 pounds weight gain

Increased risk of hypoglycemia

•Glyburide has increases risk of <u>hypoglycemia</u> slightly more as

compared with glimepiride and glipizide

Absorption, Fate, and Excretion Goodman Gilman's

Orally Absorbed

✤90% bound to plasma protien

Excreted through urine

Adverse Effect

*Hypoglycemia

✤Nonspecific Side Effect

Hypersensitivity

Drug Interactions Tripathi, 2008

Inhibitmetabolism/excretion:Cimetidine,Sulfonamide,Warfarin,Chloramphenicol.

Synergise With Drug: Salicylates, Propanolol, Lithium, Theophylline.

Displace from protein binding: Phenylbutazone, Sulfinpyrazone, Sulfonamide.

Induce Metabolism: Phenobarbitone, Phenytion, Rifampicin.

Opposite action/suppress insulin release: Corticosteroids, Diazoxide, Thaizides, Frusemide,

Biguanides

► Lowers blood glucose- increases glucose uptake and utilisation in muscle +

reduces hepatic glucose production (gluconeogenesis)

➢ reduction of intestinal glucose absorption

Adverse effects:

✓ - GIT disturbancies (anorexia + weight loss, diarrhea)

✓ - lactic acidosis rare but potencially fatal

 \checkmark Metformin should be avoided in patients who predispose to lactic acidosis

(renal and hepatic disease, heart failure...)

✓ Vit.B₁₂ Deficiency

Thiazolidinediones

Three thiazolidinediones have been used in

clinical practice (troglitazone, rosiglitazone,

and pioglitazone

troglitazone was withdrawn from use

▶ Thiazolidinediones act on adipose, muscle, and hepatic tissue

Selective agonists for nuclear peroxisome proliferator-activated receptor-g (PPARY).

➢ bind to PPAR'Y

Their main action is to diminish insulin resistance by increasing glucose

uptake and metabolism in muscle and adipose tissues

Advantages

✓ Lower risk of hypoglycemia

✓ Slight increase in <u>high-density lipoprotein</u>

✓ Actos linked to decreased triglycerides

✓ Convenient dosing

Alpha-glucosidase inhibitor

► Reduces glucose absorbance by acting on <u>small intestine</u>to cause decrease

in production of enzymes needed to digest carbohydrates

Slightly decreased risk of hypoglycemia as compared to sulfonylurea

► Not associated with weight gain

Decreases triglycerides

≻No effect on cholesterol

References

- Rang, P, H., Dale, M, M., Ritter, J, M., Flower, R, J., 2008. *Pharmacology*, 402-409.
- Tripathi, K, D., 2008. Essentials of Medical Pharmacology, 254-274.
- Robbins, Kumar, Cotran.,2007.Basic Pathology, 641-654.
- Goodman & Gilman's., 2006 .The Pharmacological Basis Of Therapeutics,
- Jack DeRuiter "OVERVIEW OF THE ANTIDIABETIC AGENTS"
 Endocrine Pharmacotherapy Module, Spring, 2003

Nancy J.V. Bohannon, MD, "Treating dual defects in diabetes: Insulin resistance and insulin secretion" Am J Health-Syst Pharm. 2002; 59(Suppl 9):S9-13.

Emily Loghmani, "DIABETES MELLITIS: TYPE 1 AND TYPE 2", *Guidelines for Adolescent Nutrition Services (2005), 167-181.*

 NK Agrawal, VS Reddy, RK Sahay, SK Bhadada, JK Agrawal, "Newer Oral Antidiabetic Agents", Journal, Indian Academy of Clinical Medicine, 2000, Vol. 1, No. 3, 245-250.

Maureen I. Harris, PhD, MPH, "Classification, Diagnostic Criteria, and Screening for Diabetes", Chapter 2, 16-31.

Thank You