# BP 801T Biostatistics & Research Methodology



Ms. Saroj. R.Valvi Asst. Professor Dept. of Pharmaceutics JES's College of Pharmacy, Nandurbar

# Unit I

Introduction to: Statistics, Biostatistics, Frequency distribution

Measures of central tendency: Mean, Median, Mode

> Measures of dispersion: Dispersion, Range, Standard deviation

Correlation: Karl Pearson's coefficient of correlation, Multiple correlation

**Statistics:-** It deals with collection, organization, analysis, summarization, interpretation and presentation of data.

# **Types:-**

1) Descriptive statistics: Summarizes features of collected information. Process of using and analyzing a set of collected information.

**2) Inferential statistics:-** Used to make predictions among large groups using collected information. It is used to deduce properties of population by testing hypothesis.

# **Statistics**

• It is the branch of mathematics that deals with the collection, organisation, analysis, interpretation and presentation of data.



Estimator:- Statistic for calculating estimate about the population based on observed data.

Pivotal quantity:- Function of sample & is observable & unobservable parameter.

> Hypothesis:- Assumption based on insufficient evidence.

Null hypothesis:- No change occur over time. No statistical significance between two variables.

Alternative hypothesis:- There is a statistical significance between two variables.

# **Biostatistics**

• It is the branch of statistics which is applied to biological

or medical science.



# **Classification of Biostatistics:-**

- Descriptive Biostatistics
- Inferential Biostatistics

## **Steps in Biostatistics:-**

- Generation of hypothesis
- Collection of experimental data
- Classification of the collected data
- Categorization and analysis of collected data
- Interpretation of data

# **Measures of Central Tendency**

• Mean (arithmetic average):- It is the value which we get by dividing the total of the values of various given items in a series by the total number of items.



• **Median:** - Is the value of the middle item of series when it is arranged in ascending or descending order of magnitude.

Median =  $\underline{6}$ 

1, 2, 3, **4**, **5**, 6, 8, 9

Median =  $(4 + 5) \div 2$ 

• **Mode:** Mode is the most commonly or frequently occurring value in a series. The mode in a distribution is that item around which there is maximum concentration. In general, mode is the size of the item which has the maximum frequency.

For example, if a data set showed:

# Mode

The mode is the number that shows up **most** often in a data set. You can have more than one mode for a set of data. This is called bimodal.

# 67, 27, 46, 21, 46, 29, 67, 28, 65, 67, 10

The mode would be 67 because it is shown three times.

**Skewness:-** Skewness is a measure of symmetry, or more precisely, the lack of symmetry. A distribution, or data set, is symmetric if it looks the same to the left and right of the center point.

**Kurtosis:-** Kurtosis is a measure of whether the data are heavy-tailed or lighttailed relative to a normal distribution.



# **Frequency Distribution**

• Is a representation, either in a graphical or tabular format, that displays the number of observations within a given interval. The frequency is how often a value occurs in an interval while the distribution is the pattern of frequency of the variable.

| Particle Size (µ) | Frequency | CF | CRF (%) |
|-------------------|-----------|----|---------|
| 60-64             | 2         | 2  | 3.17    |
| 65-69             | 7         | 9  | 14.29   |
| 70-74             | 11        | 20 | 31.75   |
| 75-79             | 15        | 35 | 55.56   |
| 80-84             | 10        | 45 | 71.43   |
| 85-89             | 9         | 54 | 85.71   |
| 90-94             | 6         | 60 | 95.24   |
| 95-99             | 3         | 63 | 100     |
|                   |           |    |         |

# **Frequency Distribution Graphs**

Histogram

#### Height of Black Cherry Trees





#### **Bar Graph**

# **Frequency Distribution Graphs**

Polygon



#### **Pie Chart**



# **Frequency Distribution Graphs**

#### **Box & Whisker Plots**





# **Characteristics:-**

- Measures of central tendency
- Measure of dispersion
- Skewness (The extent of symmetry/asymmetry)
- Kurtosis (Flatness of peakedness)

# **Measures of Dispersion**

- $\succ$  It presents the scatterings in the data.
- > It is also called as variability, scatter or spread.
- > It helps to interpret the variation of the data from one another.

Degree to which numerical data tend to spread about an average value is called variation or dispersion of data.

**Types of Measures of Dispersion:-**

1) Absolute Measure:- It contains the same unit as the original data set.

Examples:- Range, SD, etc

2) Relative Measure:- It obtained as a ratios or percentages of the average.

Examples:- Coefficient of range, SD, etc

**Range:-** It is easily calculated by subtracting the lowest scores in the series from highest. It is the difference between highest and lowest value of dispersion.

$$\mathbf{R} = \mathbf{H} - \mathbf{L}$$

**Coefficient of Range:-** Ratio between the difference of the extreme values and the sum of the extreme values.

Coefficient of Range =  $\frac{H-L}{H+L}$ 

## **Merits of Range**

- 1) It is the simplest form of the measure of dispersion.
- 2) It is easy to calculate and understand.

# **Demerits of Range**

1) It is based on two extreme observations, hence get affected by fluctuations.

**Standard Deviation** (σ):-

It measures the amount of variation or how spread out numbers in a set of values.

Low value of SD means it is close to the mean, it is also called as **expected value** of data set.

High value of SD means values are spread out over a wide

range.

**Standard Deviation** 

$$\sigma = \sqrt{\frac{\Sigma x^2}{n} - \left(\frac{\Sigma x}{n}\right)^2}$$

# Relative Standard Deviation:- $RSD = \frac{(S \times 100)}{\overline{X}}$

## **Characteristics of SD:-**

- It includes algebraic signs & it is less affected by sampling fluctuations.
- Small SD has higher probability of getting a value close to the mean.

# Correlation

- Means the relation between two variables.
- If the data has only two series, then it is known as bivariate frequency distribution.
- More than two series data is labeled as multi-variate frequency distribution.



## **Coefficient of Correlation**

- Outcome of correlation is known as coefficient of correlation.
- It is reported as **R** or **r** & its value is in between -1 to +1
- +1 indicates strong positive relationship, -1 indicates strong negative relationship & when it is 0 there exist no relationship at all.

### Karl Pearson's Coefficient of Correlation (PCC)

- It shows linear relationship between two sets of data.
- It is also called as Pearson Product Moment Correlation (PPMC)
- It does not give any idea about the slope of the line, but it only tells whether there is any relationship exist or not.

$$\mathbf{r} = \frac{\mathbf{n}(\Sigma \mathbf{x}\mathbf{y}) - (\Sigma \mathbf{x})(\Sigma \mathbf{y})}{\sqrt{\left[\mathbf{n}\Sigma \mathbf{x}^2 - (\Sigma \mathbf{x})^2\right]\left[\mathbf{n}\Sigma \mathbf{y}^2 - (\Sigma \mathbf{y})^2\right]}}$$

## **Properties of PCC:-**

- The r is the unit-less quantity.
- The value of r always fall between +1 & -1 which determine the association between two variables.
- It treats all variables equally.
- A change of origin of the system does not affect the value of r.

## r value indicating strength of variation

| Strength | Negative r   | Positive r |
|----------|--------------|------------|
| Weak     | -0.1 to -0.3 | 0.1 to 0.3 |
| Average  | -0.3 to -0.5 | 0.3 to 0.5 |
| Strong   | -0.5 to -1.0 | 0.5 to 1.0 |
|          |              |            |

## **Assumptions of PCC:-**

- There exists a linear relationship between the two variables.
- The outliners are either kept to a minimum or remove them entirely.



# **Multiple Correlation**

- Multiple correlations are related with the relationship between more than two variables.
- It is also known as square root of the coefficient of determination.
- The coefficient of multiple relations ranges between 0.00 to 1.00
- 1 value indicates predictions are correct & 0 value indicates no linear combination exist.

# Thank You!!!!